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As an example of a dynamical system, glycine has been calculated through the molecular 
mechanics approach. Of the three planar conformations studied, only one equilibrium points 
region could be considered as a catchment region. On the other hand, an intriguing relation 
appears between the gradient norm and the spectral radius of the matrix representing the metric 
tensor. 

1. I n t r o d u c t i o n  

We started this work having in mind the study of a dynamical system [1]. As an 
example of an energy-minimized, geometry-optimized molecular system we chose 
glycine, for which we also made a search for catchment regions [2]. The correspond- 
ing calculations have been performed using the molecular mechanics (MM) 
method [3]. We have studied the three most usual planar conformations; we show 
in more detail the one exhibiting the greatest diversity in the features of the dynami- 
cal system solutions. 

We have followed the spectral radius of the metric tensor, along several of the 
solutions. We have then gathered in a table the spectral radii obtained in the final 
points as well as the corresponding gradient norms. Unexpectedly, a relation seems 
to link these two quantities. 

2. Manifolds, dynamical systems and catchment regions 

We denote by R n the set of all n-tuples of  real numbers (xx, x2, . . . ,  xn), i.e. the 
usual n-dimensional space of vector algebra. A set (of"points")  M is defined to be a 
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manifold if each point P of M has an open neighbourhood which has a homeo- 
morph i smf  onto an open set of R n for some n (see fig. 1). A homeomorphism is a 
continuous 1-1 map from one space to another, having a continuous inverse. Thus, 
M is locally "like" R n [1]. The map is not required to preserve lengths or angles. 

Let us now see dynamical phenomena which may be described as taking place 
within a manifold [4]. If the function E: U ~ R is defined in the open set U c R ~, its 
gradient VE: U --~ R n is a vector of components 

( O E / O x l , . . . , O E / O x n ) ,  where x = (Xl, . . . ,xn) e U .  (1) 

The gradient points to the direction along which the function E increases most 
steeply. 

A dynamical system in an open set U is defined by the differential equation 

x' = f ( x ) ;  f :  U--'~R n. (2) 

For a gradient system, 

f (x )  = - r E ( x ) ,  (3) 

where E is the system's energy. 
The points where V E  = 0 are called equilibrium points. The equilibrium points 

of (2) are classified following the behaviour of the solutions in its neighbourhood 
and the notion of stability given here is that attributed to Liapunov [4]. 

We shall say that an equilibrium point xs is stable, if for every neighbourhood 
V of xs there exists a neighbourhood W of xs, W c V, where any solution of (2) 
x(A) with x(0) in W remains within V for any A > 0 (fig. 2(a)). 

An equilibrium point Xa is asymptotically stable if, besides being stable, any solu- 
tion x(A) of (2) with x(0) within W converges to Xa (fig. 2(b)). Finally, an equili- 
brium point xu is unstable if there exists a neighbourhood V of it such that, for any 
neighbourhood W OfXu, W c V, at least one solution x(A) of(2) having x(0) within 
W does not remain within V for any A > 0 (fig. 2(c)). Furthermore, if x is an iso- 
lated minimum of E, x is an asymptotically stable point of(2) [4]. 

The energy along the solutions of (2) is non-increasing. These solutions are 
known as steepest descent paths [5,6]. The internal coordinates of an N-atoms 
molecular system define a (3N-6) configuration space, which is a manifold of class 

Fig. 1. Definit ion of  a manifold, 
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(a) 

(b) 

(c) 

Fig. 2. (a) Stable, (b) asymptotically stable and (c) unstable equilibrium points. 

C ~. The gradient system, of course, may be described in terms of configuration 
space. 

The well-known works of Fukui and Tachibana [7] apply some of the above- 
mentioned concepts from the theory of dynamical systems to chemical reactions. 

Stable and transition structures are, respectively, asymptotically stable equili- 
brium points and unstable equilibrium points of the system. For asymptotically 
stable equilibrium points xa we shall take all the solutions of (2) tending to xa and 
for unstable equilibrium points xu we take the solutions of the system tending to Xu, 
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if they exist (fig. 3). The range of possible distortions of a molecular conformation 
which preserve chemical identity is known under the name of catchment region 
[1,8]. 

Now, a theorem discussed by Pechukas [5] states that every point belonging to 
a solution of a gradient system preserves the point symmetry group of the starting 
point. As a corollary of this theorem, nowhere along the solution may arise a new 
symmetry element not present in the starting point; this can only occur in equili- 
brium points. Therefore, an equilibrium point corresponds to a conformation hav- 
ing the highest order point symmetry group within its catchment region. 

If we analyse any solution within a catchment region, the order of the point sym- 
metry groups of its elements is constant; it could increase only at an equilibrium 
point. This possibility may direct the search of equilibrium points. Although the 
study of catchment regions would require mass-scaled coordinates, they are 
impractical, so conventional internal coordinates will do [8]. 

Most familiar vector algebras involve an inner product between vectors (scalar 
product). The metric tensor on an n-dimensional basis { e i }  has components 

g i j  = e i  . e j  . (4) 

These components form an n x n symmetric matrix. This matrix is required to 
have an inverse, of components denoted by g i j  [3]. In this work we shall not be con- 
cerned with the most important role of the metric tensor, namely that it maps vec- 
tors into one-forms in a 1-1 manner [1] (stated otherwise, it allows to raise or lower, 
respectively, covariant and contravariant tensor indices [9]). If the basis is ortho- 
normalized, the metric tensor reduces to identity, the unit matrix. 

3. Appl icat ion to glycine 

Glycine, the smallest amino acid, has been the subject of extensive theoretical 
and experimental studies [10-16]. Although we have also calculated some of the 
non-planar possible conformations, we restrict ourselves here to the three most 
usual planar conformations of glycine under a neutral form, shown in fig. 4. The 
most sophisticated theoretical results agree in appointing conformation I as the 

Fig. 3. Sets of solutions tending to a certain equilibrium point: Xa, asymptotically stable; 
Xu, unstable. 
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Fig. 4. The three most usual planar conformations of neutral glycine. 

mos t  stable one; however,  experimental  difficulties have prevented verifying this 
predic t ion [10,13] and the relative stability of  other conformers  is still a highly con- 
troversial  issue [14-16]. 

We have used Cs~sz~tr's [15] internal coordinates  as start ing parameters  in the 
M M - T H O R  package used [17]; the p rogram allows opt ions generat ing energy sur- 
faces and energy con tour  lines. In order to obtain the results shown in this work,  
we were led to decrease the grid step of  the original p rogram f rom 10 -2 to 10 -:° .  
The  gradient  norm,  accordingly,  is considered zero when at ta ining 10-1°. 

We repor t  in table 1 the relative energies obta ined for each conformat ion .  It is 
seen tha t  before geometry  optimizat ion,  conformat ion  I appears  as the mos t  stable 
one, while opt imizat ion favours conformat ion  III. Nevertheless,  the difference 
between I and III being then only 0.14 kcal /mol ,  it can hardly be considered mean-  
ingful. Glycine appears  thus to be an essentially flexible molecule [18], this feature 
account ing  for the unsett led discussion about  conformers  stability. 

Table 1 
Relative energies E of conformations I, II and III (in -kcal/mol) before and after geometry optimiza- 
tion. 

Conf. I II III 

E (before opt,) 3.7367 0.000 3.2021 
E (after opt.) 14.0893 12,3869 14,2282 
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Figure 5 shows the energy surface of conformation II as a function of the torsion 
angles of N4 and O5 around the plane defined by the atoms C1, C2 and 03. We 
denote them respectively as N ---- T(NaC1C203) and O --- ~-(O5C1CaO3). Figure 6 
shows the corresponding contour energy lines of this smooth and shallow surface. 
In the illustrations of conformation I (not shown here), we also find a huge number 
of equilibrium points. As it happens in much more sophisticated calculations, the 
sensitivity to small energy variations is low. In ref. [19] different calculation meth- 
ods are compared when studying glycine energy surfaces; the conclusion is that 
reproducing such small energy differences is a challenge for computational chemis- 
try. More recent works [14,15] add uncertainty rather than settle the question. 

Turning back to fig. 6, we call NE the region of equilibrium points around confor- 
mation II. For conformation I there are solutions converging and others diverging 
from the corresponding region N1 (not shown here), where N and/or  O differ 
from 180 °. N1 is hence an instability region; since conformation I belongs to it, 
shares this feature. Cs~sz~r [15] suggests that the repulsion of lone electron pairs on 
the nitrogen and oxygen atoms may destabilize some glycine planar forms, leading 
to saddle points. The instability of region N2 is more accentuated than that of N1, 
due to the two wide regions with lowest energy corresponding to non-planar con- 
formations (see figs. 5 and 6). As in NI, we find in N2 the symmetry group of planar 
conformations, of higher order symmetry. 

Similarly, fig. 7 shows the equilibrium points region N3. All solutions near N3 
not only remain near it, but within the region after a certain time, characterizing 
thus asymptotically stable equilibrium (conformation III may hence be considered 

, o  

Fig. 5. Energy surface of conformation II as a function of the torsion angles r(N4CIC203) (denoted 
N) and T(O5C1 C203) (denoted O). The units of energy E are kcal/mol. 
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Fig. 6. Contour energy lines of conformation II. 

as such, agreeing with refs. [12] and [13]). Now it is clearer that  the equilibrium 
point is one o f  the conformat ions  having the highest order symmetry  group within 
its ca tchment  region; as conformat ion III is an equilibrium point within N3 and it 
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Fig. 7. Contour energy lines of conformation III. 
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exhibits the highest order symmetry element (planar symmetry), N3 may be consid- 
ered a catchment region. 

4. Further developments 

We may wonder what happens with a molecule's metric along solutions of  a 
dynamical system such as those in fig. 6. The classical Chirgwin and Coulson work 
[20] mentions a noteworthy point which since then has been overlooked for many 
years, namely, that the well-known overlap matrix S of molecular calculations is 
the metric tensor of  the Hilbert space defined by the basis of atomic orbitals. It may 
be considered as an operator, for it rules the raising or lowering of tensor indices 
[9]. So, if we desire to follow the metric behaviour along a given solution, we must  
choose some quantity related to the overlap matrix. We have opted for the spectral 
radius, i.e. the highest eigenvalue of S. This is a possible definition of  norm [21]; 
we shall however speak of the spectral radius of  tensor S so as to avoid confusion 
with the much more familiar definition of norm as a vector's modulus,  which we 
shall use too. 

We use the overlap matrix built from Slater-type orbitals - such as given by the 
C N D O / 2  program [22] - of which we have calculated the eigenvalues. Al though 
CNDO supposes complete neglect of differential overlap, the overlap matrix is used 
(and it appears in standard output) in the parameterization of the Hamil tonian 
matrix elements. 

Of the three conformations studied, we shall at this stage focus our attention on 
conformation II, because it shows the greatest range of  variation in the characteris- 
tics of the dynamical system solutions. We report in table 2 the behaviour of  the 
spectral radius II so II along some points of solution O in fig. 6. Now, in table 2 
II S• [[ decreases along the solution. This is not a general trend. It tends to decrease 
in solutions A, J, O and X, while it tends to increase for E, F, K, N, S and T. We 
have found no association between these behaviours and any other quantity. Let us 
remind that II su II measures the maximum stretch which the vectors of unitary 
radius may undergo upon application of the S operator [5]. 

Let us look for a connection between the dynamical system solutions and the gra- 
dient norm in the final point of each solution, calculated with the PM3 Hamiltonian 
of the MOPAC package [23]. The norms [I V E  II thus estimated have high values 
because they are computed with geometries optimized through a completely differ- 
ent method. Let us see first the II V E  II results for the three studied conformations; 
they are respectively 80.0562 (conf. I), 90.3208 (conf. II) and 77.7704 (conf. III). 
Al though the differences in the relative norms is small, they indicate (in agreement 
with table 1) conformation III as the most  stable one. 

We have collected in table 3 both II XTE II and II so II for the solutions' final points 
displayed in fig. 6. Table 3 strongly suggests a link between the two quantities. 
The programs with which they are estimated, both make only an indirect use of  
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Table 2 
Variation of the overlap matrix spectral radius It su II along some points of solution O (see fig. 6). 

I I I I I f 

2,3 2.4 2.5 2,6 2.7 2.8 2.9 3,0 3.1 

IISijll 

Fig. 8. Gradient norm logarithm (lnl[ ~7E I[) as a function of spectral radius II S/j I[, both from 
table 3. 
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Table 3 
Gradient norm II VE II and spectral radius[[ Sij [I (see text) for the dynamical 
fig. 6 in the final points. 

system solutions of 

Conf. IIVE II II su II 

A 401.7764 2.886 
B 999.6724 2.985 
C 1000.8692 2.985 
D 1002.3634 2.985 
E 2219.4795 3.048 
F 1776.9051 3.003 
G 772.1601 2.875 
H 722.8660 2.876 
I 723.8417 2.877 
J 330.9951 2.739 
K 104.8664 2.420 
L 90.5965 2.412 
II 90.3208 2.412 
M 90.3802 2.412 
N 112.3853 2.426 
O 302.2469 2.685 
P 726.1285 2.877 
Q 725.3437 2.876 
R 724.7618 2.875 
S 1822.3083 3.006 
T 2213.1819 3.051 
U 995.0994 2.984 
V 993.5896 2.984 
W 992.2199 2.984 
X 396.9940 2.882 

overlap. The overlap integrals are not  p rogrammed in the same way in C N D O  
[22] and in M O P A C  [23]; however, for first row atoms they cannot  differ appreci- 
ably, so that  the above-mentioned relation should actually apply. Figure 8 shows 
lnll V E  II plotted against [1 S/j II. A least-squares calculations yields 

In II V E  II = 4 .447 II S/j II - 6 .238 (5) 

with a linear regression coefficient of  0.9705. 
Equat ion (5) furnishes us a relation between [I XTE II computed  by M M  and 

that  given by MOPAC.  Let us see why. At  first sight, it does not  look consistent 
with the fact that, when 1[ V E  11 is zero, its logari thm is - o o .  Nevertheless, it must  
be kept in mind that  the lower bound to II s,j II is one. This is for strictly or thogonal  
bases, and bases are never really orthogonal;  M O P A C  supposes or thogonal  bases 
in all electronic integrals, despite that  S is used in the Hamil tonian parameteriza-  
t ion .  F o r  II su II = 1, eq. (4 )g ives  lnll V E  II = - 1 . 7 9 1 ,  so tha t  II V E  II--0.167,  which  
is thus a shift in the M M - M O P A C  scale. 
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The relation between II V E  II and II s/j II given by eq. (5) is entirely unexpected 
and, of course, it must be taken as a preliminary result, subject to further testing. 

5. Concluding remarks 

Mezey [8] states a theorem interrelating catchment regions and point symmetries 
of nuclear configurations. One aspect of this theorem is that "The distribution of 
catchment regions and their critical points are the properties of the potential energy 
surface, that is, they depend on energy relations, whereas the point symmetry of 
various nuclear configurations are purely geometrical properties, not directly 
dependent on energy. Consequently, the theorem interrelates two very different 
molecularproperties" [8, p 3796]. 

This aspect is exactly the kind of result we have found, a link between the norm 
of the gradient (a quantity belonging to the energy domain) and the spectral radius 
of the overlap matrix (a typically geometrical quantity). 
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